Renewable Energy Householders in the Sunshine State

Do They Perceive a Rebound Effect?

Authors

  • Breda McCarthy

DOI:

https://doi.org/10.25120/jre.2.1.2022.3914

Keywords:

Renewable energy adoption, solar rebound, consumers' attitudes, climate change

Abstract

Rooftop solar PV installations have experienced rapid and unprecedented growth in Australia. However, one issue that contributes to inefficiencies in the electricity market is the ‘solar rebound effect’ which refers to the reduction in expected gains from eco-efficient technologies due to an increase in the use of the resource. However, little literature exists that incorporates consumers’ cognitions into studies of the solar rebound effect in Australia. This study aims to bridge a research gap by examining consumer perceptions of the solar rebound effect after installing rooftop solar, along with the psychological factors that might play a role in mitigating the solar rebound effects. A quantitative methodology was adopted, and a pilot survey was administered to residents (n=68) in a regional city.  Frequency distributions and non-parametric tests were undertaken.  The results indicate significant differences between those who report a solar rebound effect and those who do not, relating to factors such as thermal comfort, bill consciousness and an environmental self-identity. Implications for future research and practice are outlined in the paper.

References

Abreu, J., Wingartz, N., & Hardy, N. (2019). New trends in solar: A comparative study assessing the attitudes towards the adoption of rooftop PV. Energy Policy, 128, 347-363. DOI: https://doi.org/10.1016/j.enpol.2018.12.038

Agnew, S., Smith, C., & Dargusch, P. (2018). Causal loop modelling of residential solar and battery adoption dynamics: A case study of Queensland, Australia. Journal of Cleaner Production, 172, 2363-2373. DOI: https://doi.org/10.1016/j.jclepro.2017.11.174

Australian Bureau of Statistics. (2020). 6227.0 - Education and Work. Retrieved November 26, 2021. https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6227.0May%202019?OpenDocument

Australian Energy Council (2018). Solar Report Quarter 1, 2018. Australian Energy Council, Melbourne, Australia

Australian Energy Regulator (AER) (2021). State of the energy market. Retrieved November 26, 2021. https://www.aer.gov.au/publications/state-of-the-energy-market-reports

Barbarossa, C., & De Pelsmacker, P. (2016). Positive and negative antecedents of purchasing eco-friendly products: A comparison between green and non-green consumers. Journal of Business Ethics, 134(2), 229-247. DOI: https://doi.org/10.1007/s10551-014-2425-z

Best, R., Burke, P. J., & Nishitateno, S. (2019). Understanding the determinants of rooftop solar installation: evidence from household surveys in Australia. Australian Journal of Agricultural and Resource Economics, 63(4), 922-939. DOI: https://doi.org/10.1111/1467-8489.12319

Biggs, C. (2016). A resource-based view of opportunities to transform Australia's electricity sector. Journal of Cleaner Production, 123, 203-217. DOI: https://doi.org/10.1016/j.jclepro.2015.12.006

Bin, S., & Dowlatabadi, H. (2005). Consumer lifestyle approach to US energy use and the related CO 2 emissions. Energy Policy, 33(2), 197-208. DOI: https://doi.org/10.1016/S0301-4215(03)00210-6

Bondio, S., Shahnazari, M., & McHugh, A. (2018). The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market. Renewable and Sustainable Energy Reviews, 93, 642-651. DOI: https://doi.org/10.1016/j.rser.2018.05.035

Burnes, B. (2017). After Paris: Changing corporate behaviour to achieve sustainability. Social Business, 7(3-4), 333-357. DOI: https://doi.org/10.1362/204440817X15108539431532

Byrnes, L., Brown, C., Foster, J., & Wagner, L. D. (2013). Australian renewable energy policy: Barriers and challenges. Renewable Energy, 60, 711-721. DOI: https://doi.org/10.1016/j.renene.2013.06.024

Chapman, A. J., McLellan, B., & Tezuka, T. (2016). Residential solar PV policy: An analysis of impacts, successes and failures in the Australian case. Renewable Energy, 86, 1265-1279. DOI: https://doi.org/10.1016/j.renene.2015.09.061

Chen, C. Xu, A., & Day, J. (2017). Thermal comfort or money-saving? Exploring intentions to conserve energy among low-income households in the United States. Energy Research & Social Science, 26, 61-71 DOI: https://doi.org/10.1016/j.erss.2017.01.009

Chen, K., Ren, C., Gu, R., & Zhang, P. (2019). Exploring purchase intentions of new energy vehicles: From the perspective of frugality and the concept of “mianzi”. Journal of Cleaner Production, 230, 700-708. DOI: https://doi.org/10.1016/j.jclepro.2019.05.135

Deng, G., & Newton, P. (2017). Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects. Energy Policy, 110, 313-324. DOI: https://doi.org/10.1016/j.enpol.2017.08.035

Dincer, F. (2011). The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15(1), 713-720. DOI: https://doi.org/10.1016/j.rser.2010.09.026

Exadaktylos, F., & van den Bergh, J. (2021). Energy-related behaviour and rebound when rationality, self-interest and willpower are limited. Nature Energy, 6(12), 1104-1113. DOI: https://doi.org/10.1038/s41560-021-00889-4

Field, A. (2013). Discovering Statistics using IBM SPSS Statistics. Sage Publications, London.

Frondel, M.; Martinez Flores, F., & Vance, C. (2017). Heterogeneous rebound effects in individual mobility: Evidence from German households. Journal of Transport Economics and Policy, 51(2), 95–114

Galvin, R. (2021). Identifying possible drivers of rebound effects and reverse rebounds among households with rooftop photovoltaics, Renewable Energy Focus, 38, 71-83 DOI: https://doi.org/10.1016/j.ref.2021.06.002

Islam, T. (2014). Household level innovation diffusion model of photovoltaic (PV) solar cells from stated preference data. Energy Policy, 65, 340-350. DOI: https://doi.org/10.1016/j.enpol.2013.10.004

Lan, H., Cheng, B., Gou, Z., & Yu, R. (2020). An evaluation of feed-in tariffs for promoting household solar energy adoption in Southeast Queensland, Australia. Sustainable Cities and Society, 53, 101942. DOI: https://doi.org/10.1016/j.scs.2019.101942

Lastovicka, J. L., Bettencourt, L. A., Hughner, R. S., & Kuntze, R. J. (1999). Lifestyle of the tight and frugal: Theory and measurement. Journal of Consumer Research, 26(1), 85-98. DOI: https://doi.org/10.1086/209552

Li, H.X., Edwards, D.J., Hosseini, M.R., Costin, G.P., 2020. A review on renewable energy transition in Australia: An updated depiction. Journal of Cleaner Production, 242, 118475. DOI: https://doi.org/10.1016/j.jclepro.2019.118475

Mwampashi, M. M., Sklibosios Nikitopoulos, C., Konstandatos, O., & Rai, A. (2021). Large scale and rooftop solar generation in the NEM: a tale of two renewables strategies. [Working paper] Available at SSRN 3960422 http://dx.doi.org/10.2139/ssrn.3960422 DOI: https://doi.org/10.2139/ssrn.3960422

Nelson, T., Simshauser, P., & Kelley, S. (2011). Australian residential solar feed-in tariffs: industry stimulus or regressive form of taxation?. Economic Analysis and Policy, 41(2), 113-129. DOI: https://doi.org/10.1016/S0313-5926(11)50015-3

Noll, D., Dawes, C., & Rai, V. (2014). Solar community organizations and active peer effects in the adoption of residential PV. Energy Policy, 67, 330-343. DOI: https://doi.org/10.1016/j.enpol.2013.12.050

Oberst, C. A., Schmitz, H., & Madlener, R. (2019). Are prosumer households that much different? Evidence from stated residential energy consumption in Germany. Ecological Economics, 158, 101-115. DOI: https://doi.org/10.1016/j.ecolecon.2018.12.014

Okuyama, A., Yoo, S., Kumagai, J., Keeley, A. R., & Managi, S. (2022). Questioning the Sun: Unexpected emissions implications from residential solar photovoltaic systems. Resources, Conservation and Recycling, 176, 105924. DOI: https://doi.org/10.1016/j.resconrec.2021.105924

Organization for Economic Cooperation and Development (OECD) (2021). Regional Outlooks 2021 – Country Notes. Australia. Progress in the net zero transition. Retrieved November 12, 2021. https://www.oecd.org/regional/RO2021%20Australia.pdf

Queensland Competition Authority (2013). Final Report. Estimating a Fair and Reasonable Solar Feed-in Tariff for Queensland. Retrieved November 12, 2021. https://www.qca.org.au/wp-content/uploads/2019/05/31514_ER-QCA-FinalReport-ReviewofSolarFeedinTariffQLD-0313-3.pdf

Queensland Government (2018). Solar Bonus Scheme 44c feed-in tariff. Retrieved November 2, 2021. https://www.qld.gov.au/housing/buying-owning-home/energy-water-home/solar/feed-in-tariffs/solar-bonus-scheme-44c

Queensland Treasury (2021). Queensland Renewable Energy and Hydrogen Jobs Fund. Retrieved November 12, 2021. https://www.treasury.qld.gov.au/programs-and-policies/queensland-renewable-energy-and-hydrogen-jobs-fund/

Qiu, Y., Kahn, M. E., & Xing, B. (2019). Quantifying the rebound effects of residential solar panel adoption. Journal of Environmental Economics and Management, 96, 310-341. DOI: https://doi.org/10.1016/j.jeem.2019.06.003

Reimers, H., Jacksohn, A., Appenfeller, D., Lasarov, W., Hüttel, A., Rehdanz, K., ... & Hoffmann, S. (2021). Indirect rebound effects on the consumer level: A state-of-the-art literature review. Cleaner and Responsible Consumption, 3, 100032. DOI: https://doi.org/10.1016/j.clrc.2021.100032

Santarius, T., & Soland, M. (2018). How technological efficiency improvements change consumer preferences: towards a psychological theory of rebound effects. Ecological Economics, 146, 414-424. DOI: https://doi.org/10.1016/j.ecolecon.2017.12.009

Seebauer, S. (2018). The psychology of rebound effects: Explaining energy efficiency rebound behaviours with electric vehicles and building insulation in Austria. Energy Research & Social Science, 46, 311-320. DOI: https://doi.org/10.1016/j.erss.2018.08.006

Sekitou, M., Tanaka, K., & Managi, S. (2018). Household electricity demand after the introduction of solar photovoltaic systems. Economic Analysis and Policy, 57, 102-110. DOI: https://doi.org/10.1016/j.eap.2017.04.001

Simshauser, P. (2016). Distribution network prices and solar PV: Resolving rate instability and wealth transfers through demand tariffs. Energy Economics, 54, 108-122. DOI: https://doi.org/10.1016/j.eneco.2015.11.011

Simshauser, P. (2018). Garbage can theory and Australia's National Electricity Market: Decarbonisation in a hostile policy environment. Energy Policy, 120, 697-713. DOI: https://doi.org/10.1016/j.enpol.2018.05.068

Sorrell, S., Gatersleben, B., & Druckman, A. (2020). The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Research & Social Science, 64, 101439. DOI: https://doi.org/10.1016/j.erss.2020.101439

Sommer, S. (2018): Switching to green electricity: spillover effects on household consumption. SFB Discussion Paper Nr. 24/2018.

Sommerfeld, J., Buys, L., & Vine, D. (2017). Residential consumers' experiences in the adoption and use of solar PV. Energy Policy, 105, 10-16. DOI: https://doi.org/10.1016/j.enpol.2017.02.021

Spence, A., Poortinga, W., Pidgeon, N., & Lorenzoni, I. (2010). Public perceptions of energy choices: The influence of beliefs about climate change and the environment. Environment and Energy, 21(5), 384–407. DOI: https://doi.org/10.1260/0958-305X.21.5.385

Spiller, E.; Sopher, P.; Martin, N.; Mirzatuny, M.; Zhang, X. (2017): The environmental impacts of green technologies in TX. Energy Economics, 68, 199– 214. DOI: https://doi.org/10.1016/j.eneco.2017.09.009

Sweeney, J. C., Kresling, J., Webb, D., Soutar, G. N., & Mazzarol, T. (2013). Energy saving behaviours: Development of a practice-based model. Energy Policy, 61, 371-381. DOI: https://doi.org/10.1016/j.enpol.2013.06.121

Tanaka, K., Wilson, C., & Managi, S. (2022). Impact of feed-in tariffs on electricity consumption. Environmental Economics and Policy Studies, 24(1), 49-72. DOI: https://doi.org/10.1007/s10018-021-00306-w

Thøgersen, J., & Grønhøj, A. (2010). Electricity saving in households—A social cognitive approach. Energy Policy, 38(12), 7732-7743 DOI: https://doi.org/10.1016/j.enpol.2010.08.025

Toroghi, S. H., & Oliver, M. E. (2019). Framework for estimation of the direct rebound effect for residential photovoltaic systems. Applied Energy, 251, 113391. DOI: https://doi.org/10.1016/j.apenergy.2019.113391

United Nations (2015). Paris Agreement. Retrieved November 12, 2021. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

Vakiloroaya, V., Samali, B., Fakhar, A., & Pishghadam, K. (2014). A review of different strategies for HVAC energy saving. Energy Conversion and Management, 77, 738-754. DOI: https://doi.org/10.1016/j.enconman.2013.10.023

Whitmarsh, L., & O'Neill, S. (2010). Green identity, green living? The role of pro-environmental self-identity in determining consistency across diverse pro-environmental behaviours. Journal of Environmental Psychology, 30(3), 305-314. DOI: https://doi.org/10.1016/j.jenvp.2010.01.003

Zander, K. K., Simpson, G., Mathew, S., Nepal, R., & Garnett, S. T. (2019). Preferences for and potential impacts of financial incentives to install residential rooftop solar photovoltaic systems in Australia. Journal of Cleaner Production, 230, 328-338. DOI: https://doi.org/10.1016/j.jclepro.2019.05.133

Downloads

Published

2022-07-31

How to Cite

McCarthy, B. (2022). Renewable Energy Householders in the Sunshine State: Do They Perceive a Rebound Effect? . Journal of Resilient Economies (ISSN: 2653-1917), 2(1). https://doi.org/10.25120/jre.2.1.2022.3914

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
21%
33%
Days to publication 
5
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
James Cook University